

Phononic Crystals J.H. Page University of Manitoba

with

Suxia Yang and M.L. Cowan *at U of M*, Ping Sheng and C.T. Chan *at HKUST*, & Zhengyou Liu *at Wuhan University*.

We study ultrasonic waves in complex (strongly scattering) media.

Random media:

- ballistic and diffusive wave transport
- new ultrasound scattering techniques (DSS & DAWS)

Ordered media (phononic crystals):

- ultrasound tunneling
- focusing effects

For more info and papers, see <u>www.physics.umanitoba.ca/~jhpage</u>

Outline: Phononic Crystals

Motivation: Why study phononic crystals? (acoustic and elastic analogues of photonic crystals):

Wave phenomena in 3D phononic crystals (experiments and theory) :

- our crystals and the experimental setup
- spectral gaps
- ultrasound tunneling
- near field imaging
- focusing effects

Possible applications

- lenses and filters?
- sound insulation?

Conclusions

PHONONIC CRYSTALS

e.g. ordered arrays of mm-sized beads in a liquid or solid matrix \Rightarrow acoustic and elastic analogues of photonic crystals.

Why study phononic crystals?

• richer physics?

•scattering contrast $\Leftrightarrow \Delta \rho, \Delta v \rightarrow$ may be easier to achieve complete spectral gaps

•longitudinal + transverse modes \Rightarrow novel wave phenomena?

ultrasonic techniques have some advantages
measure the field not the intensity
pulsed techniques are easy

• good theory is available - e.g. Multiple Scattering Theory for elastic and acoustic waves. [Kafesaki and Economou, PRB **60**, 11993 (1999); Liu *et al.* PRB **62**, 2446 (2000); Psarobas *et al.*, Phys. Rev. B **62**, 278 (2000)]

• relatively few experiments have been performed on 3D systems (unlike 2D).

•new applications?

Questions:

- Can complete spectral gaps be readily achieved?
- How do waves travel through phononic band gaps? No propagating mode → Tunneling? How long does it take?
- Can phononic crystals be used to focus ultrasound?

Our 3D Phononic Crystals:

Close-packed periodic arrays of spherical beads surrounded by a liquid or solid matrix:

- hcp arrays of stainless steel balls in water
- fcc arrays of tungsten carbide balls in water
- fcc arrays of tungsten carbide beads in epoxy

For all these crystals:

- very high contrast scatterers
- very monodisperse spheres:
- very high quality crystals: using a hexagonal template.

 $Z_{\text{ball}}/Z_{\text{matrix}} \sim 30 \text{ to } 60$

diameter $d = 0.800 \pm 0.0006$ mm

produced by a manual assembly technique

for hcp: ABAB... layer sequence. (slabs with *c*-axis \perp layers)

for fcc: ABCABC... layer sequence. ([111]-axis \perp layers)

Face-Centred Cubic Crystal Structure

Schematic graph shows how the beads are packed in a FCC crystal along the [111] direction. Beads \land are on the bottom layer, B the second and C the third. The sequence is \land BC \land BC...

Material parameters for our phononic crystals made from tungsten carbide beads in water <u>Scatterers:</u> 0.800-mm-diameter tungsten carbide beads

$$\rho = 13.8 \text{ kg/m}^3$$

$$\mathcal{O}_L = 6.65 \text{ km/s}$$

 $\mathcal{O}_T = 3.23 \text{ km/s}$

Matrix:

water

- $\rho = 1.0 \text{ kg/m}^3$
- $\mathcal{O}_L = 1.49 \text{ km/s}$

Experimental setup

Compare transmitted pulses with reference pulses to measure:

phase velocity: $v_p(\omega) = \omega L/(\phi + 2\pi n)$ (ϕ = phase delay)

group velocity: $v_g(\omega) = L/t_{\text{peak}}$ $(t_{\text{peak}} = \text{peak delay time})$

transmissioncoefficient: $A_{trans}(\omega) / A_{ref}$ (FFT ratio)

Multiple Scattering Theory

<u>Multiple scattering theory</u> (MST) for acoustic and elastic waves -- ideally suited to spherical scatterers. (cf. KKR theory) [Liu et al. PRB **62**, 2446 (2000)]

Band-structure: calculate elastic Mie scattering of waves from all the scatterers in the crystal, and solve the resulting secular equation for the eigenfrequencies.

Transmission: calculate the transmission through a multi-layer sample with thickness *L* using a layer MST.

 \Rightarrow

Transmitted wave $T(L,\omega) = A(L,\omega) \exp[i\phi(L,\omega)]$

- A normalized amplitude (transmission coefficient)
- ϕ cumulative phase relative to the incident wave.

Phase velocity $v_p(\omega) = \omega L/\phi$ Group velocity $v_g(\omega) = \frac{d\omega}{dk} = L\frac{d\omega}{d\phi}$

hcp bandstructure: stainless steel spheres in water

a lattice constant

 v_w sound velocity in water.

Very small complete gap

Fcc bandstructure: tunsgsten carbide beads in water

Fcc bandstructure and transmission: tunsgsten carbide beads in epoxy

(*b*)

FCC tungsten carbide beads in water: Input and transmitted pulses near the lowest band gap, $k \parallel [111]$

Transmission coefficient

Cumulative Phase and the Phase Velocity

Use these data to compute the dispersion curve, ω versus $k = \omega / v_p$, and compare with the bandstructure calculation...

Fcc bandstructure: tunsgsten carbide beads in water The black symbols show experimental data from phase velocity measurements

Measuring the group velocity: Digitally filtered input and transmitted pulses (bandwidth 0.05 MHz) for a 12-layer phononic crystal in the middle of the gap, compared with the pulse transmitted through the same thickness of water.

Frequency dependence of the group velocity for a 5-layer sample.

Group Velocity versus sample thickness in the middle of the gap

The group velocity increases linearly with thickness! \Rightarrow tunneling. Yang *et al.*, Phys. Rev. Lett. **88**, 104301 (2002)

Effect of absorption - the two-modes model <u>Simple physical picture:</u>

Absorption cuts off the long scattering paths \Rightarrow destructive interference is incomplete.

Effectively, absorption introduces a small additional component having a *real* wave vector inside the gap.

Two-modes model: (Dominant) Tunneling mode (constant tunneling time) + Propagation mode (constant velocity)

 \Rightarrow Group velocity becomes

$$\overline{v}_{g} = \frac{L}{\frac{ae^{-\frac{L}{2l_{a}}}}{ae^{-\frac{L}{2l_{a}}} + \sqrt{1-a^{2}e^{-\frac{L}{2l_{b}}}}} t_{a} + \frac{\sqrt{1-a^{2}e^{-\frac{L}{2l_{b}}}}}{ae^{-\frac{L}{2l_{a}}} + \sqrt{1-a^{2}e^{-\frac{L}{2l_{b}}}}} \frac{L}{v_{b}}}$$

where L is the thickness, a is the coupling coefficient, t_a and l_a are the tunneling time and tunneling length, v_b is the group velocity of the propagating mode and l_b is its decay length.

The effect of absorption: Fits of the two-modes model to 1 D theory and to our data for 3 D phononic crystals (dashed curves).

Add: the phase velocity in the middle of the gap for the same sample thicknesses.

Electron tunneling through a barrier

Schrodinger equ.

$$-\frac{\hbar^2}{2m}\frac{d^2\varphi}{dx^2} = -(V-E)\varphi(x)$$

Boundary conditions

$$\varphi(0^{-}) = \varphi(0^{+}); \quad \varphi'(0^{-}) = \varphi'(0^{+})$$

 $\varphi(L^{-}) = \varphi(L^{+}); \quad \varphi'(L^{-}) = \varphi'(L^{+})$

$$V = \begin{cases} 0 & x < 0 \\ V_0 & 0 \le x \le L \\ 0 & x > L \end{cases}$$

From the transmitted phase at large large L, find

$$v_p = L \cdot \omega / \arctan \left[\frac{(2\hbar\omega - V_0)}{2\sqrt{(V_0 - \hbar\omega)\hbar\omega}} \right]$$
 $v_g = L \cdot \sqrt{\left(\frac{V_0}{\hbar} - \omega\right)\omega}$

Barrier: Both phase and group velocities increase with *L*.Band gap: Group velocity increases while the phase velocity is constant.

Tunneling Time

(also true for light and electrons!)

<u>Question:</u> Is ultrasound tunneling dispersionless?

Some general points about pulse propagation in dispersive media:

 \rightarrow

Incident pulse at x = 0

$$\psi(x=0,t) = e(t) \exp[i\omega_0 t]$$

pulse envelope

Fourier transform:

$$\Psi(\omega) = \Im[\psi(t)] = E(\omega - \omega_{o})$$

 $E(\omega)$ is F.T. of e(t)

Pulse after traveling a distance *x*

$$\psi(x,t) = \Im^{-1} \left[\exp\left[-\frac{x}{2l_e}\right] E(\omega - \omega_0) \exp\left[-ik(\omega)x\right] \right]$$

extinction length, $l_e^{-1} = l_s^{-1} + l_a^{-1}$
scattering absorption

Expand the wave vector $k(\omega)$ in a Taylor series about the central frequency ω_0 :

$$k(\omega) = k_{o} + \frac{dk}{d\omega} \bigg|_{o} \{\omega - \omega_{o}\} + \frac{1}{2!} \frac{d^{2}k}{d\omega^{2}} \bigg|_{o} \{\omega - \omega_{o}\}^{2} + \dots$$

inverse group velocity group velocity dispersion (GVD)

Good approximation, so long as the pulse bandwidth is sufficiently narrow that:

- higher order terms in $k(\omega)$ expansion are negligible
- frequency dependence of l_e is not important.

Frequency dependence of the wave vector, the inverse group velocity and the group velocity dispersion near the band gap in a 5 layer tungsten carbide/water crystal.
[c.f. measurements near the band edge in photonic crystals by Imhof *et al.* PRL **83**, 2942 (1999)]

Pulse broadening (a) just above the band gap, (b) in the middle of the gap and (c) just below the band gap (bandwidth 0.02 MHz). \Rightarrow Very weak dispersion in the gap, despite very strong scattering and a large variation in v_p with ω .

